From Local Pattern Mining to Relevant Bi-cluster Characterization
نویسندگان
چکیده
Clustering or bi-clustering techniques have been proved quite useful in many application domains. A weakness of these techniques remains the poor support for grouping characterization. We consider eventually large Boolean data sets which record properties of objects and we assume that a bi-partition is available. We introduce a generic cluster characterization technique which is based on collections of bi-sets (i.e., sets of objects associated to sets of properties) which satisfy some userdefined constraints, and a measure of the accuracy of a given bi-set as a bi-cluster characterization pattern. The method is illustrated on both formal concepts (i.e., “maximal rectangles of true values”) and the new type of δ-bi-sets (i.e., “rectangles of true values with a bounded number of exceptions per column”). The added-value is illustrated on benchmark data and two real data sets which are intrinsically noisy: a medical data about meningitis and Plasmodium falciparum gene expression data.
منابع مشابه
Supporting bi-cluster interpretation in 0/1 data by means of local patterns
Clustering or co-clustering techniques have been proved useful in many application domains. A weakness of these techniques remains the poor support for grouping characterization. As a result, interpreting clustering results and discovering knowledge from them can be quite hard. We consider potentially large Boolean data sets which record properties of objects and we assume the availability of a...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملAn Efficient Range Partitioning Method for Finding Frequent Patterns from Huge Database
Data mining is finding increasing acceptance in science and business areas that need to analyze large amounts of data to discover trends that they could not otherwise find. Different applications may require different data mining techniques. The kinds of knowledge that could be discovered from a database are categorized into association rules mining, sequential patterns mining, classification, ...
متن کاملCalcul de motifs sous contraintes pour la classification supervisée. (Constraint-based pattern mining for classification purpose)
Recent advances in local pattern mining (eg. frequent itemsets or association rules) has shown to be very useful for classification tasks. This thesis deals with local constraintbased pattern mining and its use in classification problems. We suggest methodological contributions for two difficult classification tasks : – (i) When training classifiers, the presence of attribute-noise can severely...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005